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Statistical analysis of strength distribution of alumina 
based single fibres accounting for fibre diameter 
variations 

V. LAVASTE, J. B E S S O N * , A .  R. BUNSELL 
Ecole des Mines de Paris, Centre des Materiaux P.M. Fourt, B.P. 87, Evry Codex 91003, France 

The strength distribution of alumina single fibres has been evaluated at room temperature. It 
has been shown that the classical Weibull distribution function cannot account for the 
observed dispersions for different gauge lengths. New statistical descriptions have been 
developed, which take into account the fact that the fibre has an irregular cross-section. 
Rupture probability functions are derived for cases where the characteristic length for 
diameter variation is much smaller or much larger than the gauge length. The fibre has then 
to be viewed as a structure. The material constituting the structure was supposed to obey 
a simple Weibull law. The method requires the fit of the Weibull parameters of the fibre 
material and the determination of the geometrical characteristics of the fibres. 

1. In troduct ion  
The mechanical properties of continuously reinforced 
metal or ceramic matrix composites strongly depend 
on those of the fibres. It is therefore necessary to 
characterize the mechanical properties of the 
individual fibres to be able to design the proper 
composite materials. The purpose of this study was to 
analyse the room temperature rupture properties of 
two types of alumina based single fibres (FP and 
PRD-166, Dupont  de Nemours). Ceramics are 
characterized by variable strength, which is usually 
attributed to different size flaws preexisting in the 
material. Rupture strength is therefore a stochastic 
variable, which is commonly described by a Weibull 
law. It is actually observed that the Weibull law does 
not allow correct fitting of the experimental data, so 
that multimodal Weibull distributions are often used 
to represent the data. This can be viewed as a way of 
using more adjustable parameters to fit the data, since 
it is sometimes difficult to identify defect populations. 
In this study it was assumed that the material 
constituting the fibres obeys a simple Weibull law. 
Discrepancies between this simple model and the 
experimental data are then attributed to the fact that 
the fibre is not a perfect cylinder, but actually has 
a wavy external diameter. Several hypotheses were 
then tested. It was shown that fibre diameters are not 
constant, accounting for the observed discrepancy 
with the classical Weibull model. 

2. Experimental procedure 
Two fibres were selected for this study: ( 1 ) F P  
alumina fibres, (2) PRD-166 alumina zirconia fibres 
(20wt% ZrO2). Both fibres are almost fully dense, 

*Also affiiated re: CNRS UA 866 

small cavities are present at grain boundaries. Fibre 
diameters were measured on the polished section of 
a bundle embedded in an epoxy resin using image 
analysis. Seven hundred individual sections were 
measured for each fibre; the results are given in 
Table I. Diameter scatter is relatively important. In 
order to estimate diameter variation along one fibre, 
several measurements (at 1 mm steps) were made on 
a 150ram long sample using scanning electron 
microscopy (SEM). The relative standard deviation, 
6s, is equal to 3.0% for the FP fibre and to 2.8% for 
the PRD fibre. This is significantly smaller than the 
dispersion on a batch of fibres and equal to the disper- 
sion that would result from a surface roughness cor- 
responding to one grain. It is therefore possible to 
consider that each fibre has a constant diameter, but 
that the diameter varys from one fibre to another. 

Mean grain sizes, G, were measured with a trans- 
mission electron microscope (TEM) photographs of 
ion milled fibres [1], using an automatic image ana- 
lyser. The results are for FP: GAI~O3 = 0.50 gm; for 
PRD: GAI~o~ = 0.34 gm, Gzro~ = 0.15 ~tm. 

Tensile tests were performed at room temperature 
using different gauge lengths (5, 25, 75 and 150 mm) at 
a constant displacement rate. For  each gauge length, 
30 individual fibres were tested. This number of tests 
was required in order to obtain reliable statistical 
parameters [2]. The experimental setup has been de- 
scribed elsewhere [-3, 41. 

3. Results and discussion 
3.1. Data analysis: classical Weibull 

approach 
The Weibull statistical description of the rupture of 
brittle materials, which assumes that the rupture of the 
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T A B L E  I Sections of FP and PRD fibres 

Fibre S(btm z) A(S) (gm 2) 8s(% ) /)(pm) 

FP 269.7 40.8 15.1 18.5 
PRD166 242.6 45.7 19.0 17.6 

weakest link witl result in the failure of the whole 
structure, states that the rupture probability, PR, is 
related to the applied stress, cy, by the following rela- 
tion 

- V o \ ~ o /  j (1) 
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where V is the volume of the structure, Vo a reference 
volume, cy0 a reference stress and m a constant repres- 
enting data dispersion. The existence of a stress, csu, 
below which failure does not occur is sometimes ac- 
counted for. For  ceramic materials, it is generally 
accepted that this stress is close to zero. For  fibres 
having a constant section, the previous equation can 
be rewritten as 

[ L(o)m] 
PR(C~) = 1 - exp - Loo ~oo (2) 

where L is the fibre length and Lo = Vo/S. S is the 
average fibre diameter*. Parameters representative of 
the Weibull distribution, i.e. m and cy0, can be es- 
timated using two independent methods: 

1. a least square fit linear regression for each gauge 
length, since 

I n [ - -  ln(1 -- PR)] = In(L/Lo) 

Figure 1 Weibu11 plots for each gauge length of the FP fibre. Lines 
indicate fitted curves: (O) 5 mm, ( + )  25 mm, (D) 75 mm, and 
(A) 150 mm. 
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an alternative method consists in the use of a max- 
imum likelihood method for each gauge length; and 

2. using the average value of the rupture stress, 
which is given by 

Fits using the first method on  different gauge lengths, 
as well as the second method, should give the same 
values for m and Cyo. 

Weibull plots for each gauge length are shown on 
Figs 1 and 2. Values of m and C~o are indicated in 
Table II  for both the least square fit method and the 
maximum likelihood method. The reference length, 
Lo, was taken as equal to 5 mm. Mean rupture stresses 
as a function of the gauge length are plotted on Fig. 3 
for both fibres. F rom this plot it can be deduced, using 
Equation 3, the following values of m and Go 

m ~o(MPa) 

FP  10.84 1852 (4) 

P R D  12.03 2062 

Figure 2 Weibull plots for each gauge length of the PRD fibre. 
Lines indicate fitted curves: (O) 5 mm, ( + )  25 mm, ([]) 75 mm 
and (•) i50mm.  

Values of m calculated with both methods do not 
agree. Values obtained by the second method will 
underestimate the experimental dispersion, but will 
give correct values of the mean rupture strength. 
Values obtained by the first method for the longest 
gauge length will overestimate the mean rupture stress 
for other gauge lengths; on the other hand, values 
obtained for the shortest gauge length will underes- 
timate the mean rupture stress. This clearly demon- 
strates that the Weibull model cannot be applied to 
the rupture of single fibres. It  is also of importance to 
note that several authors have observed the same 
trend [5, 6]. 

3.2. N e w  s t a t i s t i c a l  d e s c r i p t i o n s  
As previously noted, the classical Weibull description 
of the rupture of brittle solids cannot be applied to the 
failure of ceramic single fibres. Many authors have 
explained this discrepancy by the presence of different 

*Let x be a stochastic variable, its average value will be denoted 2, its standard deviation A(x) and its coefficient of variation 6x = A(x)/s 
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TABLE II Values of Weibull parameters m and % for each gauge length for both fibres (Lo = 5 mm) 

Gauge length, L 

Fibre 5 mm 25 mm 75 mm 150 mm Average 

Least square fit method 
FP 

m 4.32 6.20 4.06 3.55 4.53 
cro, MPa 1912 2163 3090 3590 

PRD 
m 9.59 10.26 4.74 5.54 7.73 
~o, MPa 21039 2206 3051 2930 

Maximum likelihood method 

FP 
m 3.68 5.24 4.11 3.76 4.20 
Cro, MPa 1914 2275 3050 3384 

PRD 
m 8.44 9.76 5.23 5.62 7.26 
~o, MPa 2045 2224 2878 2900 
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Figure 3 Mean rupture stress versus gauge length for both fibres. 

defect populat ions  located either on the surface or in 
the bulk of the specimen [6 8]. The Weibull equation, 
(1), is then rewritten as follows 

PR(~) = 1 - exp{  Voo L\ (%U 

k m  "v" 

Volume defect populations 

1} 
k _ _  I y -  

Surface defect populations 

(5) 

where m~i and ~ i  (respectively msi and %i) represent 
the Weibull parameters  of the ith volume (respectively, 
surface) defect populat ion.  Z represents the surface of 
the sample and Z0 a reference surface. Using a suffi- 
ciently high number  of  populat ions  will always allow 
correct representation of the experimental measure- 
ments. In the absence of clear microstructural  obser- 
vat ion of  several defect populations,  da ta  analysis can 
be viewed as a curve fitting exercise. In the following 
discussion, several explanations for the discrepancy 
between the Weibull model  and the ceramic rupture 
data  will be proposed.  It will be assumed that the fibre 
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material obeys a simple Weibull law, Equat ion  1; 
m and cro being the material Weibull parameters.  

3.2. 1. Preselection of  samples during 
preparation 

Fibres generally have to be extracted from a bundle 
prior to testing. This can cause the fibre to break thus 
affecting the statistical analysis of fibre strength: the 
longer the fibre the higher the load, Fp, necessary to 
extract it from the bundle. It  is assumed that  for 
a given length, Fp is constant.  All fibres having a crit- 
ical defect of ~ ~ ~p = Fp/S will break during sample 
preparation.  The observed rupture probabil i ty P~ will 
therefore be equal to 

P* = 0 i f ( y < ~ p  v \Ss  //J~,; \--~-s/ 

= PR(O') -- PR(~P) if ~ > ~p (6) 
i - PR(CYp) 

For  the short  gauge length, i.e. 5 mm, it can be as- 
sumed that  the preload due to the sample preparat ion 
is negligible, so that the Weibull parameters  are cor- 
rectly measured using the first method  (see above). For  
higher gauge lengths, preload is more important .  The 
Weibull plots for L = 5 and L = 150 m m  obtained 
using method  1 are shown on Fig. 4a, b. The plot for 
L = 150 mm, obtained with the Weibull parameters  
for L = 5 mm, is also indicated, Fig. 4c. It is now 
assumed that the 150 m m  long fibres are subjected to 
a preload stress equal to 5 0 0 M P a ,  Fig. 4d, or  
800 MPa,  Fig. 4e; both  curves (d) and (e) are cal- 
culated using Equat ion  6. It  can clearly be seen from 
Fig. 4 that  preload cannot  explain the discrepancy 
between Weibull 's model  and the present data. 

3.2.2. Effect of  section variation: small 
characteristic length 

In this section it is assumed that the fibre diameter 
varies over a characteristic length, l, much smaller 
than the fibre length, L, (1/L~ 1). The fibre 
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Figure 4 Effect of preload on measured rupture probability (see 
text): Weibull plot for ( a ) L = 5 m m ;  (b) L =  150mm; (c) 
L = 150 mm, calculated from data at L = 5 mm; (d) Fig. 4c with 
prestress equal to 500 MPa; and (e) Fig. 4c with prestress equal to 
800 MPa. 

with 

Z~ = [1 + ~(y)]t  m~,~dy 
0 

and 

S 1 
Zsz = [1 + a(y)]ll2-m~'dy 

0 

The most  impor t an t  consequence of the previous 
equat ion  is that  the fact of  having an irregular  fibre 
does not  modify  the rupture  probabi l i ty  function: if 
the mater ia l  rupture  stress obeys a Weibull  law, the 
s tandard  rupture  stress, c~*, will also follow a Weibull  
law, with the same m paramete r s  and slightly different 
reference stresses (since Z is always close to 1). The  
results presented in this s tudy cannot  therefore be 
explained by assuming that  the fibres have an irregu- 
lar cross-section. 

cross-section is then given by 

s = ~[1 + ~(x/l)] 

where s is a function of the fibre co-ordinate  x. ~ is 
character ized by the following properties:  

1. s < 1, so that  notch  effects can be neglected, 
2. ~ = 0, and 
3. ~ is a periodic function (the per iod is equal  to 1). 

The non failure probabi l i ty  of a fibre slice of  thickness, 
dx, under  load, F, having a section, S(x), is 

= exp - - ~ o  

= exp{  - + ,Oo  

6PNR(X) 

PR 

with 

(7) 

with ex* = F/S. The non-failure probabi l i ty  of the fibre 
is PNR = lqax 8PNR(X). Therefore  

- -  [1 + e(x/1)]l-mdx ln(PNR) -- g o \ ~ o J  ,)o 

(8) 

Finally, the rupture  probabi l i ty  of the fibre is given by 

= 1 - e x p [  SL (c~*x]'~Z] 
- g  t o) j 

j r 1 

Z = [1 + s ( y ) ] l - m d y  (9) 
0 

In the case of  mul t imoda l  defect distr ibutions it can be 
shown, using a similar method,  that  the general Equa-  
t ion 5 has to be rewrit ten as 

PR = 1 -- exp - - ~  " "  + - -  Z~i+ " "  
\ CYvi/ 

22o " '"  + ~s/ Zs i+  "'" 

(lO) 

3.2.3. Effect of section variation: large 
characteristic length 

It is now assumed tha t  each fibre has a given section, 
S, and that  the section varies a m o n g  the different 
fibres (this is what  was experimental ly  observed on the 
F P  and P R D  fibres). The section distr ibution function 
is noted  as fs. Since it is practical ly impossible to 
measure  the d iameter  of each fibre before testing, the 
basis for statistical da ta  analysis is the s tandard  rup-  
ture stress, ex*, defined as 

measured  rupture  force 
or* = (11) g 

Weibull  pa ramete rs  m and cy 0 are fitted using cr* 
instead of the actual  stress result~ in an increased da ta  
dispersion (since sections are dispersed), so that  m is 
underest imated.  Let  P* be the rupture  probabi l i ty  
associated to ~*. Pi* is the actual  experimental ly  ob- 
served rupture  probabil i ty;  x is the normal ized sec- 
tion. Thus  

S 
x - g (12) 

and the distr ibution function of x, fx, is given by 

1 
f=(x) = ~ fs(S) (13) 

The  reference length, L0, is defined as follows 

No 
L = ~ (14) 

Considering a fibre of section, S, under  load, F, and 
not ing that  the stress in the fibre is equal to 
cr = F/S = c~*/x, the cont r ibut ion  of this fibre to the 
rupture  probabi l i ty  d P *  is equal to 

dP~(cr*) = P R ( ~ ) f x ( x ) d x  (15) 
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S and F are two independent variables, so that the 
previous equation can be integrated, therefore 

f o F ~  1-m P*(G*) = 1 - exp - ~oo 

x(~*~m]f.(x)dx (16) 
\Go/  J 

P*(G*) can be calculated by numerical integration of 
the previous formula. The average standard rupture 
stress can be calculated as follows. Derivation of 
Equation 16 gives 

8G*SPr _ f+mrrlLxl_mG*m-lo Lo Cy~ 

x e x p l - -  L x~ ~ dx 

The average standard rupture stress G* is given by 

G~ = 8PR ~ , d G ,  
�9 8 G  ~ u 

f~ fx g e-m(G*~m = �9 mLoX \ G o /  

[ L l_m(G*~m]f~(x) dxdG,(17) 
xexp  - LoX \ G o /  J 

f0 X xl-1/mfx(x) dx 

since ~o :~ m~mexp( - ~m) d0~ = F(1 + ~). The follow- 
ing remarks can be made. 

1. When f~ is a Dirac function, i.e. there is no 
section variation, Equations 16 and 17 are equivalent 
to the classical Weibull distribution, Equations 1 and 
3. 

2. According to Equation 17, m, can be directly 

calculated from a linear regression between log(G*) 
and log(L), Fig. 3. In addition, m is usually large 
enough so that 1 - 1/m is close to 1 and 

The exponential is equal to zero for G*/XG0 > 1 and 
equal to 1 for G*/XGo < 1. The previous equation can 
be written as follows 

PC(G*) = 1-- f~,~/~of~(x)dx 

= | fx(x)dx dO 

= (20) 

The standard rupture stress distribution function is 
therefore equal to the section distribution function. 

4. The method can be used for any material 
strength distribution .function, PR, (a multimodal 
Weibull function for instance). However, the average 
standard rupture stress, Equation 17, cannot then be 
derived analytically, so that it has to be calculated 
numerically using a proper integration method. 

In the case of surface defects the material rupture 
probability is defined as 

- - -  (21)  PR(G) = 1 -- exp s  J 

The reference length, Lo, is then defined as 
Lo = Y~o/(4/~S) 1/2. It can easily be shown that Equa- 
tion 16 is rewritten as 

P*(G*) 1 - f ~ ~ 1 7 6  - L ~/2-msFo x 

• dX (22) 

and the mean rupture stress, Equation 17, is rewritten 
as 

G* = F(  1 -{-1) G0~Z )(g0~l/ms 

t 
4+00 

• xl-1/2msfx(x)dx 
o (23) 

~0 +~176 
Ix = xl-1/"fx(x)dx ,~ 1 

Therefore C~o can be calculated from Equation 17 as 

GO = ~ ( L ~  1/m 1 (18) 
\Lo/ r(1 + 1/m)/x 

3. When the material rupture stress is not disper- 
sed, i.e. m ~ + oo, Equation 16 can be expressed as 

f *+oO 
P*(G*) = 1 -  lim | 

m-+ + oo ,j o 

xexp[ - L (G*/x']m]fx(x) / J (19) 

3.3. Appl ica t ion to exper imenta l  data 
The observed diameter variations for both FP and 
PRD fibres correspond to section variation over 
a large characteristic length, so that Section 3.2.3. can 
be applied. The fibre section repartition function, f~, is 
supposed to obey a Gaussian law (average, 1 standard 
deviation; coefficient of dispersion of the fibre section, 
Table I). The m and Go parameters were determined 
using the standard mean rupture stress, Equations 17 
and 18, Fig. 3. Equation 17 was integrated using 
a second-order Runge-Kutta  method. Computed and 
experimental rupture probability for the PRD fibres 
are shown on Fig. 5, having good agreement. The 
agreement is not as good for the FP fibre, Fig. 6, 
but can be improved using a higher fibre section 
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Figure 5 Modified Weibull plot for the PRD fibre, 8:< = 19.0%. 
Lines indicate fitted curves: (O) 5 ram, ( + )  25 mm, (El) 75 mm 
and (A) 150 ram. 
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Figure 8 Computed (lines) and experimental (symbols) mean rup- 
ture stress and standard deviation for FP (A) and PRD (~) fibres 
using the Weibull model modified to account for dispersion on the 
fibre diameter. 
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Figure 6 Modified Weibull plot for the FP fibre, 8x = 15.1%. Lines 
indicate fitted curves: (~>) 5ram, ( + )  25ram, ([]) 75 mm and 
(A) 150 mm. 
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Figure 7 Modified Weibull plot for the FP fibre, 8x = 25.0%. Lines 
indicate fitted curves: (O) 5 mm, ( + )  25 ram, ([~) 75 mm and 
(A) 150 mm. 

dispersion coefficient equal to 0.25, Fig. 7. The same 
computations were carried out assuming a uniform 
fibre cross-section distribution leading to very similar 
results. Finally, experimental and computed average 

rupture stress and standard deviation are compared 
on Fig. 8, showing good agreement. 

4. Conclusions 
Room temperature rupture strength of two alumina 
based single fibres has been measured for different 
gauge lengths. It has been shown that the classical 
Weibull distribution cannot fit the results, as is com- 
monly observed. Using multimodal Weibull laws 
could indeed allow fitting of the experimental data, 
but since no evidence for different defect populations 
was found, other hypotheses based on the geometry of 
the fibre were investigated, assuming that the material 
obeys a simple Weibull distribution. This assumption 
is possibly too simple (in the case of the FP fibre for 
instance); however, the main topic of this work is to 
quantify the effect of fibre geometry on the observed 
rupture statistics. The fibre has therefore to be viewed 
as a structure. Equations representing the failure 
probability for preloaded fibres, and fibres having 
a wavy diameter, have been fully developed. In the 
case of the studied fibres, it can be considered that the 
diameter is constant over the gauge length, but that 
each fibre has a different diameter. The Weibull para- 
meters m and e~o are then fitted from the average 
rupture stress. The rupture probability for each gauge 
length can then be computed using the fibre diameter 
distribution function. Results compare well with 
measured data. It is important to note that the pro- 
posed method requires the fit of only two parameters 
(m and e~o) and the determination of the diameter 
distribution function; whereas methods based on 
multimodal distributions require the fit of more ma- 
terial parameters (at least four), which are sometimes 
difficult to relate to microstructural features. It is 
therefore important to account for the fibre geometry 
when trying to estimate rupture characteristics of 
single fibres. 
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